Metamath Proof Explorer
Description: If x is not free in ph and ps , then it is not free in
( ph -/\ ps ) . (Contributed by Scott Fenton, 2-Jan-2018)
|
|
Ref |
Expression |
|
Hypotheses |
nfan.1 |
|
|
|
nfan.2 |
|
|
Assertion |
nfnan |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nfan.1 |
|
2 |
|
nfan.2 |
|
3 |
|
df-nan |
|
4 |
1 2
|
nfan |
|
5 |
4
|
nfn |
|
6 |
3 5
|
nfxfr |
|