Metamath Proof Explorer


Theorem nfof

Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014)

Ref Expression
Hypothesis nfof.1 _xR
Assertion nfof _xfR

Proof

Step Hyp Ref Expression
1 nfof.1 _xR
2 df-of fR=uV,vVwdomudomvuwRvw
3 nfcv _xV
4 nfcv _xdomudomv
5 nfcv _xuw
6 nfcv _xvw
7 5 1 6 nfov _xuwRvw
8 4 7 nfmpt _xwdomudomvuwRvw
9 3 3 8 nfmpo _xuV,vVwdomudomvuwRvw
10 2 9 nfcxfr _xfR