Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
nfrabwOLD
Metamath Proof Explorer
Description: Obsolete version of nfrabw as of 23-Nov_2024. (Contributed by NM , 13-Oct-2003) (Revised by Gino Giotto , 10-Jan-2024)
(New usage is discouraged.) (Proof modification is discouraged.)
Ref
Expression
Hypotheses
nfrabw.1
⊢ Ⅎ x φ
nfrabw.2
⊢ Ⅎ _ x A
Assertion
nfrabwOLD
⊢ Ⅎ _ x y ∈ A | φ
Proof
Step
Hyp
Ref
Expression
1
nfrabw.1
⊢ Ⅎ x φ
2
nfrabw.2
⊢ Ⅎ _ x A
3
df-rab
⊢ y ∈ A | φ = y | y ∈ A ∧ φ
4
nftru
⊢ Ⅎ y ⊤
5
2
nfcri
⊢ Ⅎ x y ∈ A
6
5
a1i
⊢ ⊤ → Ⅎ x y ∈ A
7
1
a1i
⊢ ⊤ → Ⅎ x φ
8
6 7
nfand
⊢ ⊤ → Ⅎ x y ∈ A ∧ φ
9
4 8
nfabdw
⊢ ⊤ → Ⅎ _ x y | y ∈ A ∧ φ
10
9
mptru
⊢ Ⅎ _ x y | y ∈ A ∧ φ
11
3 10
nfcxfr
⊢ Ⅎ _ x y ∈ A | φ