Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Restricted quantification Restricted class abstraction nfrabwOLD  
				
		 
		
			
		 
		Description:   Obsolete version of nfrabw  as of 23-Nov-2024.  (Contributed by NM , 13-Oct-2003)   (Revised by GG , 10-Jan-2024) 
       (New usage is discouraged.)   (Proof modification is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						nfrabw.1   ⊢   Ⅎ  x   φ        
					 
					
						nfrabw.2   ⊢    Ⅎ   _  x  A       
					 
				
					Assertion 
					nfrabwOLD   ⊢    Ⅎ   _  x   y  ∈  A  |   φ          
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							nfrabw.1  ⊢   Ⅎ  x   φ        
						
							2 
								
							 
							nfrabw.2  ⊢    Ⅎ   _  x  A       
						
							3 
								
							 
							df-rab  ⊢    y  ∈  A  |   φ     =   y   |    y  ∈  A    ∧   φ          
						
							4 
								
							 
							nftru  ⊢   Ⅎ  y  ⊤       
						
							5 
								2 
							 
							nfcri  ⊢   Ⅎ  x   y  ∈  A         
						
							6 
								5 
							 
							a1i   ⊢  ⊤  →   Ⅎ  x   y  ∈  A           
						
							7 
								1 
							 
							a1i   ⊢  ⊤  →   Ⅎ  x   φ          
						
							8 
								6  7 
							 
							nfand   ⊢  ⊤  →   Ⅎ  x    y  ∈  A    ∧   φ           
						
							9 
								4  8 
							 
							nfabdw   ⊢  ⊤  →    Ⅎ   _  x   y   |    y  ∈  A    ∧   φ            
						
							10 
								9 
							 
							mptru  ⊢    Ⅎ   _  x   y   |    y  ∈  A    ∧   φ          
						
							11 
								3  10 
							 
							nfcxfr  ⊢    Ⅎ   _  x   y  ∈  A  |   φ