Metamath Proof Explorer


Theorem nfraldw

Description: Deduction version of nfralw . Version of nfrald with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 15-Feb-2013) Avoid ax-9 , ax-ext . (Revised by Gino Giotto, 24-Sep-2024)

Ref Expression
Hypotheses nfraldw.1 yφ
nfraldw.2 φ_xA
nfraldw.3 φxψ
Assertion nfraldw φxyAψ

Proof

Step Hyp Ref Expression
1 nfraldw.1 yφ
2 nfraldw.2 φ_xA
3 nfraldw.3 φxψ
4 df-ral yAψyyAψ
5 2 nfcrd φxyA
6 5 3 nfimd φxyAψ
7 1 6 nfald φxyyAψ
8 4 7 nfxfrd φxyAψ