Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Restricted quantification Restricted universal and existential quantification nfraldw  
				
		 
		
			
		 
		Description:   Deduction version of nfralw  .  Version of nfrald  with a disjoint
       variable condition, which does not require ax-13  .  (Contributed by NM , 15-Feb-2013)   Avoid ax-9  , ax-ext  .  (Revised by GG , 24-Sep-2024) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						nfraldw.1   ⊢   Ⅎ  y   φ        
					 
					
						nfraldw.2    ⊢   φ   →    Ⅎ   _  x  A         
					 
					
						nfraldw.3    ⊢   φ   →   Ⅎ  x   ψ          
					 
				
					Assertion 
					nfraldw    ⊢   φ   →   Ⅎ  x   ∀  y  ∈  A   ψ            
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							nfraldw.1  ⊢   Ⅎ  y   φ        
						
							2 
								
							 
							nfraldw.2   ⊢   φ   →    Ⅎ   _  x  A         
						
							3 
								
							 
							nfraldw.3   ⊢   φ   →   Ⅎ  x   ψ          
						
							4 
								
							 
							df-ral   ⊢   ∀  y  ∈  A   ψ     ↔   ∀  y    y  ∈  A    →   ψ           
						
							5 
								2 
							 
							nfcrd   ⊢   φ   →   Ⅎ  x   y  ∈  A           
						
							6 
								5  3 
							 
							nfimd   ⊢   φ   →   Ⅎ  x    y  ∈  A    →   ψ           
						
							7 
								1  6 
							 
							nfald   ⊢   φ   →   Ⅎ  x   ∀  y    y  ∈  A    →   ψ             
						
							8 
								4  7 
							 
							nfxfrd   ⊢   φ   →   Ⅎ  x   ∀  y  ∈  A   ψ