Metamath Proof Explorer


Theorem nfrald

Description: Deduction version of nfral . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfraldw when possible. (Contributed by NM, 15-Feb-2013) (Revised by Mario Carneiro, 7-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfrald.1 yφ
nfrald.2 φ_xA
nfrald.3 φxψ
Assertion nfrald φxyAψ

Proof

Step Hyp Ref Expression
1 nfrald.1 yφ
2 nfrald.2 φ_xA
3 nfrald.3 φxψ
4 df-ral yAψyyAψ
5 nfcvf ¬xx=y_xy
6 5 adantl φ¬xx=y_xy
7 2 adantr φ¬xx=y_xA
8 6 7 nfeld φ¬xx=yxyA
9 3 adantr φ¬xx=yxψ
10 8 9 nfimd φ¬xx=yxyAψ
11 1 10 nfald2 φxyyAψ
12 4 11 nfxfrd φxyAψ