| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfrald.1 | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 2 |  | nfrald.2 | ⊢ ( 𝜑  →  Ⅎ 𝑥 𝐴 ) | 
						
							| 3 |  | nfrald.3 | ⊢ ( 𝜑  →  Ⅎ 𝑥 𝜓 ) | 
						
							| 4 |  | df-ral | ⊢ ( ∀ 𝑦  ∈  𝐴 𝜓  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐴  →  𝜓 ) ) | 
						
							| 5 |  | nfcvf | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝜑  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦 )  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 7 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦 )  →  Ⅎ 𝑥 𝐴 ) | 
						
							| 8 | 6 7 | nfeld | ⊢ ( ( 𝜑  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦 )  →  Ⅎ 𝑥 𝑦  ∈  𝐴 ) | 
						
							| 9 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦 )  →  Ⅎ 𝑥 𝜓 ) | 
						
							| 10 | 8 9 | nfimd | ⊢ ( ( 𝜑  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦 )  →  Ⅎ 𝑥 ( 𝑦  ∈  𝐴  →  𝜓 ) ) | 
						
							| 11 | 1 10 | nfald2 | ⊢ ( 𝜑  →  Ⅎ 𝑥 ∀ 𝑦 ( 𝑦  ∈  𝐴  →  𝜓 ) ) | 
						
							| 12 | 4 11 | nfxfrd | ⊢ ( 𝜑  →  Ⅎ 𝑥 ∀ 𝑦  ∈  𝐴 𝜓 ) |