Metamath Proof Explorer


Theorem nfreud

Description: Deduction version of nfreu . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 15-Feb-2013) (Revised by Mario Carneiro, 8-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfrmod.1 yφ
nfrmod.2 φ_xA
nfrmod.3 φxψ
Assertion nfreud φx∃!yAψ

Proof

Step Hyp Ref Expression
1 nfrmod.1 yφ
2 nfrmod.2 φ_xA
3 nfrmod.3 φxψ
4 df-reu ∃!yAψ∃!yyAψ
5 nfcvf ¬xx=y_xy
6 5 adantl φ¬xx=y_xy
7 2 adantr φ¬xx=y_xA
8 6 7 nfeld φ¬xx=yxyA
9 3 adantr φ¬xx=yxψ
10 8 9 nfand φ¬xx=yxyAψ
11 1 10 nfeud2 φx∃!yyAψ
12 4 11 nfxfrd φx∃!yAψ