Metamath Proof Explorer


Theorem nfreuw

Description: Bound-variable hypothesis builder for restricted unique existence. Version of nfreu with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 30-Oct-2010) (Revised by Gino Giotto, 10-Jan-2024) Avoid ax-9 , ax-ext . (Revised by Wolf Lammen, 21-Nov-2024)

Ref Expression
Hypotheses nfreuw.1 _ x A
nfreuw.2 x φ
Assertion nfreuw x ∃! y A φ

Proof

Step Hyp Ref Expression
1 nfreuw.1 _ x A
2 nfreuw.2 x φ
3 df-reu ∃! y A φ ∃! y y A φ
4 1 nfcri x y A
5 4 2 nfan x y A φ
6 5 nfeuw x ∃! y y A φ
7 3 6 nfxfr x ∃! y A φ