Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Restricted quantification Restricted existential uniqueness and at-most-one quantifier nfreuwOLD  
				
		 
		
			
		 
		Description:   Obsolete version of nfreuw  as of 21-Nov-2024.  (Contributed by NM , 30-Oct-2010)   (Revised by GG , 10-Jan-2024) 
       (Proof modification is discouraged.)   (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						nfreuwOLD.1   ⊢    Ⅎ   _  x  A       
					 
					
						nfreuwOLD.2   ⊢   Ⅎ  x   φ        
					 
				
					Assertion 
					nfreuwOLD   ⊢   Ⅎ  x   ∃!  y  ∈  A   φ          
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							nfreuwOLD.1  ⊢    Ⅎ   _  x  A       
						
							2 
								
							 
							nfreuwOLD.2  ⊢   Ⅎ  x   φ        
						
							3 
								
							 
							df-reu   ⊢   ∃!  y  ∈  A   φ     ↔   ∃!  y    y  ∈  A    ∧   φ           
						
							4 
								
							 
							nftru  ⊢   Ⅎ  y  ⊤       
						
							5 
								
							 
							nfcvd   ⊢  ⊤  →    Ⅎ   _  x  y         
						
							6 
								1 
							 
							a1i   ⊢  ⊤  →    Ⅎ   _  x  A         
						
							7 
								5  6 
							 
							nfeld   ⊢  ⊤  →   Ⅎ  x   y  ∈  A           
						
							8 
								2 
							 
							a1i   ⊢  ⊤  →   Ⅎ  x   φ          
						
							9 
								7  8 
							 
							nfand   ⊢  ⊤  →   Ⅎ  x    y  ∈  A    ∧   φ           
						
							10 
								4  9 
							 
							nfeudw   ⊢  ⊤  →   Ⅎ  x   ∃!  y    y  ∈  A    ∧   φ             
						
							11 
								3  10 
							 
							nfxfrd   ⊢  ⊤  →   Ⅎ  x   ∃!  y  ∈  A   φ            
						
							12 
								11 
							 
							mptru  ⊢   Ⅎ  x   ∃!  y  ∈  A   φ