Metamath Proof Explorer


Theorem nfreuw

Description: Bound-variable hypothesis builder for restricted unique existence. Version of nfreu with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 30-Oct-2010) (Revised by Gino Giotto, 10-Jan-2024) Avoid ax-9 , ax-ext . (Revised by Wolf Lammen, 21-Nov-2024)

Ref Expression
Hypotheses nfreuw.1 𝑥 𝐴
nfreuw.2 𝑥 𝜑
Assertion nfreuw 𝑥 ∃! 𝑦𝐴 𝜑

Proof

Step Hyp Ref Expression
1 nfreuw.1 𝑥 𝐴
2 nfreuw.2 𝑥 𝜑
3 df-reu ( ∃! 𝑦𝐴 𝜑 ↔ ∃! 𝑦 ( 𝑦𝐴𝜑 ) )
4 1 nfcri 𝑥 𝑦𝐴
5 4 2 nfan 𝑥 ( 𝑦𝐴𝜑 )
6 5 nfeuw 𝑥 ∃! 𝑦 ( 𝑦𝐴𝜑 )
7 3 6 nfxfr 𝑥 ∃! 𝑦𝐴 𝜑