Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
nfreuwOLD
Metamath Proof Explorer
Description: Obsolete version of nfreuw as of 21-Nov-2024. (Contributed by NM , 30-Oct-2010) (Revised by Gino Giotto , 10-Jan-2024)
(Proof modification is discouraged.) (New usage is discouraged.)
Ref
Expression
Hypotheses
nfreuw.1
⊢ Ⅎ _ x A
nfreuw.2
⊢ Ⅎ x φ
Assertion
nfreuwOLD
⊢ Ⅎ x ∃! y ∈ A φ
Proof
Step
Hyp
Ref
Expression
1
nfreuw.1
⊢ Ⅎ _ x A
2
nfreuw.2
⊢ Ⅎ x φ
3
df-reu
⊢ ∃! y ∈ A φ ↔ ∃! y y ∈ A ∧ φ
4
nftru
⊢ Ⅎ y ⊤
5
nfcvd
⊢ ⊤ → Ⅎ _ x y
6
1
a1i
⊢ ⊤ → Ⅎ _ x A
7
5 6
nfeld
⊢ ⊤ → Ⅎ x y ∈ A
8
2
a1i
⊢ ⊤ → Ⅎ x φ
9
7 8
nfand
⊢ ⊤ → Ⅎ x y ∈ A ∧ φ
10
4 9
nfeudw
⊢ ⊤ → Ⅎ x ∃! y y ∈ A ∧ φ
11
3 10
nfxfrd
⊢ ⊤ → Ⅎ x ∃! y ∈ A φ
12
11
mptru
⊢ Ⅎ x ∃! y ∈ A φ