Metamath Proof Explorer


Theorem nfsbOLD

Description: Obsolete version of nfsb as of 25-Feb-2024. (Contributed by Mario Carneiro, 11-Aug-2016) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis nfsb.1 zφ
Assertion nfsbOLD zyxφ

Proof

Step Hyp Ref Expression
1 nfsb.1 zφ
2 axc16nf zz=yzyxφ
3 1 nfsb4 ¬zz=yzyxφ
4 2 3 pm2.61i zyxφ