Metamath Proof Explorer


Theorem nfsbcdw

Description: Deduction version of nfsbcw . Version of nfsbcd with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 23-Nov-2005) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses nfsbcdw.1 yφ
nfsbcdw.2 φ_xA
nfsbcdw.3 φxψ
Assertion nfsbcdw φx[˙A/y]˙ψ

Proof

Step Hyp Ref Expression
1 nfsbcdw.1 yφ
2 nfsbcdw.2 φ_xA
3 nfsbcdw.3 φxψ
4 df-sbc [˙A/y]˙ψAy|ψ
5 1 3 nfabdw φ_xy|ψ
6 2 5 nfeld φxAy|ψ
7 4 6 nfxfrd φx[˙A/y]˙ψ