Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets
nfsbcdw
Metamath Proof Explorer
Description: Deduction version of nfsbcw . Version of nfsbcd with a disjoint
variable condition, which does not require ax-13 . (Contributed by NM , 23-Nov-2005) (Revised by Gino Giotto , 10-Jan-2024)
Ref
Expression
Hypotheses
nfsbcdw.1
⊢ Ⅎ y φ
nfsbcdw.2
⊢ φ → Ⅎ _ x A
nfsbcdw.3
⊢ φ → Ⅎ x ψ
Assertion
nfsbcdw
⊢ φ → Ⅎ x [ ˙ A / y ] ˙ ψ
Proof
Step
Hyp
Ref
Expression
1
nfsbcdw.1
⊢ Ⅎ y φ
2
nfsbcdw.2
⊢ φ → Ⅎ _ x A
3
nfsbcdw.3
⊢ φ → Ⅎ x ψ
4
df-sbc
⊢ [ ˙ A / y ] ˙ ψ ↔ A ∈ y | ψ
5
1 3
nfabdw
⊢ φ → Ⅎ _ x y | ψ
6
2 5
nfeld
⊢ φ → Ⅎ x A ∈ y | ψ
7
4 6
nfxfrd
⊢ φ → Ⅎ x [ ˙ A / y ] ˙ ψ