Metamath Proof Explorer


Theorem nfsbcdw

Description: Deduction version of nfsbcw . Version of nfsbcd with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 23-Nov-2005) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses nfsbcdw.1 y φ
nfsbcdw.2 φ _ x A
nfsbcdw.3 φ x ψ
Assertion nfsbcdw φ x [˙A / y]˙ ψ

Proof

Step Hyp Ref Expression
1 nfsbcdw.1 y φ
2 nfsbcdw.2 φ _ x A
3 nfsbcdw.3 φ x ψ
4 df-sbc [˙A / y]˙ ψ A y | ψ
5 1 3 nfabdw φ _ x y | ψ
6 2 5 nfeld φ x A y | ψ
7 4 6 nfxfrd φ x [˙A / y]˙ ψ