Metamath Proof Explorer


Theorem nlmlmod

Description: A normed module is a left module. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion nlmlmod WNrmModWLMod

Proof

Step Hyp Ref Expression
1 eqid BaseW=BaseW
2 eqid normW=normW
3 eqid W=W
4 eqid ScalarW=ScalarW
5 eqid BaseScalarW=BaseScalarW
6 eqid normScalarW=normScalarW
7 1 2 3 4 5 6 isnlm WNrmModWNrmGrpWLModScalarWNrmRingxBaseScalarWyBaseWnormWxWy=normScalarWxnormWy
8 7 simplbi WNrmModWNrmGrpWLModScalarWNrmRing
9 8 simp2d WNrmModWLMod