Metamath Proof Explorer


Theorem nmfval2

Description: The value of the norm function on a group as the distance restricted to the elements of the base set to zero. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses nmfval2.n N=normW
nmfval2.x X=BaseW
nmfval2.z 0˙=0W
nmfval2.d D=distW
nmfval2.e E=DX×X
Assertion nmfval2 WGrpN=xXxE0˙

Proof

Step Hyp Ref Expression
1 nmfval2.n N=normW
2 nmfval2.x X=BaseW
3 nmfval2.z 0˙=0W
4 nmfval2.d D=distW
5 nmfval2.e E=DX×X
6 2 3 grpidcl WGrp0˙X
7 1 2 3 4 5 nmfval0 0˙XN=xXxE0˙
8 6 7 syl WGrpN=xXxE0˙