Metamath Proof Explorer


Theorem nmlnop0

Description: A linear operator with a zero norm is identically zero. (Contributed by NM, 12-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion nmlnop0 TLinOpnormopT=0T=0hop

Proof

Step Hyp Ref Expression
1 fveqeq2 T=ifTLinOpT0hopnormopT=0normopifTLinOpT0hop=0
2 eqeq1 T=ifTLinOpT0hopT=0hopifTLinOpT0hop=0hop
3 1 2 bibi12d T=ifTLinOpT0hopnormopT=0T=0hopnormopifTLinOpT0hop=0ifTLinOpT0hop=0hop
4 0lnop 0hopLinOp
5 4 elimel ifTLinOpT0hopLinOp
6 5 nmlnop0iHIL normopifTLinOpT0hop=0ifTLinOpT0hop=0hop
7 3 6 dedth TLinOpnormopT=0T=0hop