Metamath Proof Explorer


Theorem nmlnop0iHIL

Description: A linear operator with a zero norm is identically zero. (Contributed by NM, 18-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypothesis nmlnop0.1 TLinOp
Assertion nmlnop0iHIL normopT=0T=0hop

Proof

Step Hyp Ref Expression
1 nmlnop0.1 TLinOp
2 eqid +norm=+norm
3 eqid +normnormOpOLD+norm=+normnormOpOLD+norm
4 2 3 hhnmoi normop=+normnormOpOLD+norm
5 eqid +norm0op+norm=+norm0op+norm
6 2 5 hh0oi 0hop=+norm0op+norm
7 eqid +normLnOp+norm=+normLnOp+norm
8 2 7 hhlnoi LinOp=+normLnOp+norm
9 2 hhnv +normNrmCVec
10 4 6 8 9 9 nmlno0i TLinOpnormopT=0T=0hop
11 1 10 ax-mp normopT=0T=0hop