Metamath Proof Explorer


Theorem hhlnoi

Description: The linear operators of Hilbert space. (Contributed by NM, 19-Nov-2007) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses hhlno.1 U=+norm
hhlno.2 L=ULnOpU
Assertion hhlnoi LinOp=L

Proof

Step Hyp Ref Expression
1 hhlno.1 U=+norm
2 hhlno.2 L=ULnOpU
3 df-lnop LinOp=t|xyztxy+z=xty+tz
4 1 hhnv UNrmCVec
5 1 hhba =BaseSetU
6 1 hhva +=+vU
7 1 hhsm =𝑠OLDU
8 5 5 6 6 7 7 2 lnoval UNrmCVecUNrmCVecL=t|xyztxy+z=xty+tz
9 4 4 8 mp2an L=t|xyztxy+z=xty+tz
10 3 9 eqtr4i LinOp=L