Metamath Proof Explorer


Theorem hhnmoi

Description: The norm of an operator in Hilbert space. (Contributed by NM, 19-Nov-2007) (Revised by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses hhnmo.1 U=+norm
hhnmo.2 N=UnormOpOLDU
Assertion hhnmoi normop=N

Proof

Step Hyp Ref Expression
1 hhnmo.1 U=+norm
2 hhnmo.2 N=UnormOpOLDU
3 df-nmop normop=tsupx|ynormy1x=normty*<
4 1 hhnv UNrmCVec
5 1 hhba =BaseSetU
6 1 hhnm norm=normCVU
7 5 5 6 6 2 nmoofval UNrmCVecUNrmCVecN=tsupx|ynormy1x=normty*<
8 4 4 7 mp2an N=tsupx|ynormy1x=normty*<
9 3 8 eqtr4i normop=N