Metamath Proof Explorer


Theorem hhbloi

Description: A bounded linear operator in Hilbert space. (Contributed by NM, 19-Nov-2007) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses hhnmo.1 U=+norm
hhblo.2 B=UBLnOpU
Assertion hhbloi BndLinOp=B

Proof

Step Hyp Ref Expression
1 hhnmo.1 U=+norm
2 hhblo.2 B=UBLnOpU
3 df-bdop BndLinOp=xLinOp|normopx<+∞
4 1 hhnv UNrmCVec
5 eqid UnormOpOLDU=UnormOpOLDU
6 1 5 hhnmoi normop=UnormOpOLDU
7 eqid ULnOpU=ULnOpU
8 1 7 hhlnoi LinOp=ULnOpU
9 6 8 2 bloval UNrmCVecUNrmCVecB=xLinOp|normopx<+∞
10 4 4 9 mp2an B=xLinOp|normopx<+∞
11 3 10 eqtr4i BndLinOp=B