Metamath Proof Explorer


Theorem hh0oi

Description: The zero operator in Hilbert space. (Contributed by NM, 7-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hhnmo.1 U=+norm
hh0o.2 Z=U0opU
Assertion hh0oi 0hop=Z

Proof

Step Hyp Ref Expression
1 hhnmo.1 U=+norm
2 hh0o.2 Z=U0opU
3 1 hhba =BaseSetU
4 df-ch0 0=0
5 1 hh0v 0=0vecU
6 5 sneqi 0=0vecU
7 4 6 eqtri 0=0vecU
8 3 7 xpeq12i ×0=BaseSetU×0vecU
9 df0op2 0hop=×0
10 1 hhnv UNrmCVec
11 eqid BaseSetU=BaseSetU
12 eqid 0vecU=0vecU
13 11 12 2 0ofval UNrmCVecUNrmCVecZ=BaseSetU×0vecU
14 10 10 13 mp2an Z=BaseSetU×0vecU
15 8 9 14 3eqtr4i 0hop=Z