Metamath Proof Explorer


Theorem hh0v

Description: The zero vector of Hilbert space. (Contributed by NM, 17-Nov-2007) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypothesis hhnv.1 U=+norm
Assertion hh0v 0=0vecU

Proof

Step Hyp Ref Expression
1 hhnv.1 U=+norm
2 1 hhnv UNrmCVec
3 eqid +vU=+vU
4 eqid 0vecU=0vecU
5 3 4 0vfval UNrmCVec0vecU=GId+vU
6 2 5 ax-mp 0vecU=GId+vU
7 1 hhva +=+vU
8 7 fveq2i GId+=GId+vU
9 hilid GId+=0
10 6 8 9 3eqtr2ri 0=0vecU