| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hhnmo.1 |
⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
| 2 |
|
hh0o.2 |
⊢ 𝑍 = ( 𝑈 0op 𝑈 ) |
| 3 |
1
|
hhba |
⊢ ℋ = ( BaseSet ‘ 𝑈 ) |
| 4 |
|
df-ch0 |
⊢ 0ℋ = { 0ℎ } |
| 5 |
1
|
hh0v |
⊢ 0ℎ = ( 0vec ‘ 𝑈 ) |
| 6 |
5
|
sneqi |
⊢ { 0ℎ } = { ( 0vec ‘ 𝑈 ) } |
| 7 |
4 6
|
eqtri |
⊢ 0ℋ = { ( 0vec ‘ 𝑈 ) } |
| 8 |
3 7
|
xpeq12i |
⊢ ( ℋ × 0ℋ ) = ( ( BaseSet ‘ 𝑈 ) × { ( 0vec ‘ 𝑈 ) } ) |
| 9 |
|
df0op2 |
⊢ 0hop = ( ℋ × 0ℋ ) |
| 10 |
1
|
hhnv |
⊢ 𝑈 ∈ NrmCVec |
| 11 |
|
eqid |
⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) |
| 12 |
|
eqid |
⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) |
| 13 |
11 12 2
|
0ofval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ) → 𝑍 = ( ( BaseSet ‘ 𝑈 ) × { ( 0vec ‘ 𝑈 ) } ) ) |
| 14 |
10 10 13
|
mp2an |
⊢ 𝑍 = ( ( BaseSet ‘ 𝑈 ) × { ( 0vec ‘ 𝑈 ) } ) |
| 15 |
8 9 14
|
3eqtr4i |
⊢ 0hop = 𝑍 |