| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hhnmo.1 |
|- U = <. <. +h , .h >. , normh >. |
| 2 |
|
hh0o.2 |
|- Z = ( U 0op U ) |
| 3 |
1
|
hhba |
|- ~H = ( BaseSet ` U ) |
| 4 |
|
df-ch0 |
|- 0H = { 0h } |
| 5 |
1
|
hh0v |
|- 0h = ( 0vec ` U ) |
| 6 |
5
|
sneqi |
|- { 0h } = { ( 0vec ` U ) } |
| 7 |
4 6
|
eqtri |
|- 0H = { ( 0vec ` U ) } |
| 8 |
3 7
|
xpeq12i |
|- ( ~H X. 0H ) = ( ( BaseSet ` U ) X. { ( 0vec ` U ) } ) |
| 9 |
|
df0op2 |
|- 0hop = ( ~H X. 0H ) |
| 10 |
1
|
hhnv |
|- U e. NrmCVec |
| 11 |
|
eqid |
|- ( BaseSet ` U ) = ( BaseSet ` U ) |
| 12 |
|
eqid |
|- ( 0vec ` U ) = ( 0vec ` U ) |
| 13 |
11 12 2
|
0ofval |
|- ( ( U e. NrmCVec /\ U e. NrmCVec ) -> Z = ( ( BaseSet ` U ) X. { ( 0vec ` U ) } ) ) |
| 14 |
10 10 13
|
mp2an |
|- Z = ( ( BaseSet ` U ) X. { ( 0vec ` U ) } ) |
| 15 |
8 9 14
|
3eqtr4i |
|- 0hop = Z |