| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0oval.1 |
|- X = ( BaseSet ` U ) |
| 2 |
|
0oval.6 |
|- Z = ( 0vec ` W ) |
| 3 |
|
0oval.0 |
|- O = ( U 0op W ) |
| 4 |
|
fveq2 |
|- ( u = U -> ( BaseSet ` u ) = ( BaseSet ` U ) ) |
| 5 |
4 1
|
eqtr4di |
|- ( u = U -> ( BaseSet ` u ) = X ) |
| 6 |
5
|
xpeq1d |
|- ( u = U -> ( ( BaseSet ` u ) X. { ( 0vec ` w ) } ) = ( X X. { ( 0vec ` w ) } ) ) |
| 7 |
|
fveq2 |
|- ( w = W -> ( 0vec ` w ) = ( 0vec ` W ) ) |
| 8 |
7 2
|
eqtr4di |
|- ( w = W -> ( 0vec ` w ) = Z ) |
| 9 |
8
|
sneqd |
|- ( w = W -> { ( 0vec ` w ) } = { Z } ) |
| 10 |
9
|
xpeq2d |
|- ( w = W -> ( X X. { ( 0vec ` w ) } ) = ( X X. { Z } ) ) |
| 11 |
|
df-0o |
|- 0op = ( u e. NrmCVec , w e. NrmCVec |-> ( ( BaseSet ` u ) X. { ( 0vec ` w ) } ) ) |
| 12 |
1
|
fvexi |
|- X e. _V |
| 13 |
|
snex |
|- { Z } e. _V |
| 14 |
12 13
|
xpex |
|- ( X X. { Z } ) e. _V |
| 15 |
6 10 11 14
|
ovmpo |
|- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( U 0op W ) = ( X X. { Z } ) ) |
| 16 |
3 15
|
eqtrid |
|- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> O = ( X X. { Z } ) ) |