| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hhnmo.1 |
⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
| 2 |
|
hhblo.2 |
⊢ 𝐵 = ( 𝑈 BLnOp 𝑈 ) |
| 3 |
|
df-bdop |
⊢ BndLinOp = { 𝑥 ∈ LinOp ∣ ( normop ‘ 𝑥 ) < +∞ } |
| 4 |
1
|
hhnv |
⊢ 𝑈 ∈ NrmCVec |
| 5 |
|
eqid |
⊢ ( 𝑈 normOpOLD 𝑈 ) = ( 𝑈 normOpOLD 𝑈 ) |
| 6 |
1 5
|
hhnmoi |
⊢ normop = ( 𝑈 normOpOLD 𝑈 ) |
| 7 |
|
eqid |
⊢ ( 𝑈 LnOp 𝑈 ) = ( 𝑈 LnOp 𝑈 ) |
| 8 |
1 7
|
hhlnoi |
⊢ LinOp = ( 𝑈 LnOp 𝑈 ) |
| 9 |
6 8 2
|
bloval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ) → 𝐵 = { 𝑥 ∈ LinOp ∣ ( normop ‘ 𝑥 ) < +∞ } ) |
| 10 |
4 4 9
|
mp2an |
⊢ 𝐵 = { 𝑥 ∈ LinOp ∣ ( normop ‘ 𝑥 ) < +∞ } |
| 11 |
3 10
|
eqtr4i |
⊢ BndLinOp = 𝐵 |