| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hhnmo.1 |
|- U = <. <. +h , .h >. , normh >. |
| 2 |
|
hhblo.2 |
|- B = ( U BLnOp U ) |
| 3 |
|
df-bdop |
|- BndLinOp = { x e. LinOp | ( normop ` x ) < +oo } |
| 4 |
1
|
hhnv |
|- U e. NrmCVec |
| 5 |
|
eqid |
|- ( U normOpOLD U ) = ( U normOpOLD U ) |
| 6 |
1 5
|
hhnmoi |
|- normop = ( U normOpOLD U ) |
| 7 |
|
eqid |
|- ( U LnOp U ) = ( U LnOp U ) |
| 8 |
1 7
|
hhlnoi |
|- LinOp = ( U LnOp U ) |
| 9 |
6 8 2
|
bloval |
|- ( ( U e. NrmCVec /\ U e. NrmCVec ) -> B = { x e. LinOp | ( normop ` x ) < +oo } ) |
| 10 |
4 4 9
|
mp2an |
|- B = { x e. LinOp | ( normop ` x ) < +oo } |
| 11 |
3 10
|
eqtr4i |
|- BndLinOp = B |