Metamath Proof Explorer


Theorem hhnmoi

Description: The norm of an operator in Hilbert space. (Contributed by NM, 19-Nov-2007) (Revised by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses hhnmo.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
hhnmo.2 𝑁 = ( 𝑈 normOpOLD 𝑈 )
Assertion hhnmoi normop = 𝑁

Proof

Step Hyp Ref Expression
1 hhnmo.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 hhnmo.2 𝑁 = ( 𝑈 normOpOLD 𝑈 )
3 df-nmop normop = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 𝑡𝑦 ) ) ) } , ℝ* , < ) )
4 1 hhnv 𝑈 ∈ NrmCVec
5 1 hhba ℋ = ( BaseSet ‘ 𝑈 )
6 1 hhnm norm = ( normCV𝑈 )
7 5 5 6 6 2 nmoofval ( ( 𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ) → 𝑁 = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 𝑡𝑦 ) ) ) } , ℝ* , < ) ) )
8 4 4 7 mp2an 𝑁 = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 𝑡𝑦 ) ) ) } , ℝ* , < ) )
9 3 8 eqtr4i normop = 𝑁