| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bloval.3 |
⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) |
| 2 |
|
bloval.4 |
⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) |
| 3 |
|
bloval.5 |
⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) |
| 4 |
|
oveq1 |
⊢ ( 𝑢 = 𝑈 → ( 𝑢 LnOp 𝑤 ) = ( 𝑈 LnOp 𝑤 ) ) |
| 5 |
|
oveq1 |
⊢ ( 𝑢 = 𝑈 → ( 𝑢 normOpOLD 𝑤 ) = ( 𝑈 normOpOLD 𝑤 ) ) |
| 6 |
5
|
fveq1d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) = ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) ) |
| 7 |
6
|
breq1d |
⊢ ( 𝑢 = 𝑈 → ( ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ ↔ ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ ) ) |
| 8 |
4 7
|
rabeqbidv |
⊢ ( 𝑢 = 𝑈 → { 𝑡 ∈ ( 𝑢 LnOp 𝑤 ) ∣ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } = { 𝑡 ∈ ( 𝑈 LnOp 𝑤 ) ∣ ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } ) |
| 9 |
|
oveq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝑈 LnOp 𝑤 ) = ( 𝑈 LnOp 𝑊 ) ) |
| 10 |
9 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( 𝑈 LnOp 𝑤 ) = 𝐿 ) |
| 11 |
|
oveq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝑈 normOpOLD 𝑤 ) = ( 𝑈 normOpOLD 𝑊 ) ) |
| 12 |
11 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( 𝑈 normOpOLD 𝑤 ) = 𝑁 ) |
| 13 |
12
|
fveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) = ( 𝑁 ‘ 𝑡 ) ) |
| 14 |
13
|
breq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ ↔ ( 𝑁 ‘ 𝑡 ) < +∞ ) ) |
| 15 |
10 14
|
rabeqbidv |
⊢ ( 𝑤 = 𝑊 → { 𝑡 ∈ ( 𝑈 LnOp 𝑤 ) ∣ ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } = { 𝑡 ∈ 𝐿 ∣ ( 𝑁 ‘ 𝑡 ) < +∞ } ) |
| 16 |
|
df-blo |
⊢ BLnOp = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 𝑡 ∈ ( 𝑢 LnOp 𝑤 ) ∣ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } ) |
| 17 |
2
|
ovexi |
⊢ 𝐿 ∈ V |
| 18 |
17
|
rabex |
⊢ { 𝑡 ∈ 𝐿 ∣ ( 𝑁 ‘ 𝑡 ) < +∞ } ∈ V |
| 19 |
8 15 16 18
|
ovmpo |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑈 BLnOp 𝑊 ) = { 𝑡 ∈ 𝐿 ∣ ( 𝑁 ‘ 𝑡 ) < +∞ } ) |
| 20 |
3 19
|
eqtrid |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝐵 = { 𝑡 ∈ 𝐿 ∣ ( 𝑁 ‘ 𝑡 ) < +∞ } ) |