Metamath Proof Explorer


Theorem nn0lt10b

Description: A nonnegative integer less than 1 is 0 . (Contributed by Paul Chapman, 22-Jun-2011) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Assertion nn0lt10b N0N<1N=0

Proof

Step Hyp Ref Expression
1 elnn0 N0NN=0
2 nnnlt1 N¬N<1
3 2 pm2.21d NN<1N=0
4 ax-1 N=0N<1N=0
5 3 4 jaoi NN=0N<1N=0
6 1 5 sylbi N0N<1N=0
7 0lt1 0<1
8 breq1 N=0N<10<1
9 7 8 mpbiri N=0N<1
10 6 9 impbid1 N0N<1N=0