Metamath Proof Explorer


Theorem nn0mulcl

Description: Closure of multiplication of nonnegative integers. (Contributed by NM, 22-Jul-2004) (Proof shortened by Mario Carneiro, 17-Jul-2014)

Ref Expression
Assertion nn0mulcl M0N0 M N0

Proof

Step Hyp Ref Expression
1 nnsscn
2 id
3 df-n0 0=0
4 nnmulcl MN M N
5 4 adantl MN M N
6 2 3 5 un0mulcl M0N0 M N0
7 1 6 mpan M0N0 M N0