Metamath Proof Explorer


Theorem nn0nnaddcl

Description: A nonnegative integer plus a positive integer is a positive integer. (Contributed by NM, 22-Dec-2005)

Ref Expression
Assertion nn0nnaddcl M0NM+N

Proof

Step Hyp Ref Expression
1 nncn NN
2 nn0cn M0M
3 addcom NMN+M=M+N
4 1 2 3 syl2an NM0N+M=M+N
5 nnnn0addcl NM0N+M
6 4 5 eqeltrrd NM0M+N
7 6 ancoms M0NM+N