Metamath Proof Explorer


Theorem nnaddcomli

Description: Version of addcomli for natural numbers. (Contributed by Steven Nguyen, 1-Aug-2023)

Ref Expression
Hypotheses nnaddcomli.1 A
nnaddcomli.2 B
nnaddcomli.3 A+B=C
Assertion nnaddcomli B+A=C

Proof

Step Hyp Ref Expression
1 nnaddcomli.1 A
2 nnaddcomli.2 B
3 nnaddcomli.3 A+B=C
4 nnaddcom BAB+A=A+B
5 2 1 4 mp2an B+A=A+B
6 5 3 eqtri B+A=C