Metamath Proof Explorer


Theorem nneop

Description: A positive integer is even or odd. (Contributed by AV, 30-May-2020)

Ref Expression
Assertion nneop N N 2 N + 1 2

Proof

Step Hyp Ref Expression
1 nneo N N 2 ¬ N + 1 2
2 1 biimprd N ¬ N + 1 2 N 2
3 2 orrd N N + 1 2 N 2
4 3 orcomd N N 2 N + 1 2