| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2nn |
|
| 2 |
1
|
nncnd |
|
| 3 |
|
2cn |
|
| 4 |
3
|
a1i |
|
| 5 |
|
2ne0 |
|
| 6 |
5
|
a1i |
|
| 7 |
2 4 6
|
divcan2d |
|
| 8 |
|
nncn |
|
| 9 |
8 4 6
|
divcan2d |
|
| 10 |
9
|
oveq1d |
|
| 11 |
7 10
|
eqtr4d |
|
| 12 |
|
nnz |
|
| 13 |
|
nnz |
|
| 14 |
|
zneo |
|
| 15 |
12 13 14
|
syl2an |
|
| 16 |
15
|
expcom |
|
| 17 |
16
|
necon2bd |
|
| 18 |
11 17
|
syl5com |
|
| 19 |
|
oveq1 |
|
| 20 |
19
|
oveq1d |
|
| 21 |
20
|
eleq1d |
|
| 22 |
|
oveq1 |
|
| 23 |
22
|
eleq1d |
|
| 24 |
21 23
|
orbi12d |
|
| 25 |
|
oveq1 |
|
| 26 |
25
|
oveq1d |
|
| 27 |
26
|
eleq1d |
|
| 28 |
|
oveq1 |
|
| 29 |
28
|
eleq1d |
|
| 30 |
27 29
|
orbi12d |
|
| 31 |
|
oveq1 |
|
| 32 |
31
|
oveq1d |
|
| 33 |
32
|
eleq1d |
|
| 34 |
|
oveq1 |
|
| 35 |
34
|
eleq1d |
|
| 36 |
33 35
|
orbi12d |
|
| 37 |
|
oveq1 |
|
| 38 |
37
|
oveq1d |
|
| 39 |
38
|
eleq1d |
|
| 40 |
|
oveq1 |
|
| 41 |
40
|
eleq1d |
|
| 42 |
39 41
|
orbi12d |
|
| 43 |
|
df-2 |
|
| 44 |
43
|
oveq1i |
|
| 45 |
|
2div2e1 |
|
| 46 |
44 45
|
eqtr3i |
|
| 47 |
|
1nn |
|
| 48 |
46 47
|
eqeltri |
|
| 49 |
48
|
orci |
|
| 50 |
|
peano2nn |
|
| 51 |
|
nncn |
|
| 52 |
|
add1p1 |
|
| 53 |
52
|
oveq1d |
|
| 54 |
|
2cnne0 |
|
| 55 |
|
divdir |
|
| 56 |
3 54 55
|
mp3an23 |
|
| 57 |
45
|
oveq2i |
|
| 58 |
56 57
|
eqtrdi |
|
| 59 |
53 58
|
eqtrd |
|
| 60 |
51 59
|
syl |
|
| 61 |
60
|
eleq1d |
|
| 62 |
50 61
|
imbitrrid |
|
| 63 |
62
|
orim2d |
|
| 64 |
|
orcom |
|
| 65 |
63 64
|
imbitrdi |
|
| 66 |
24 30 36 42 49 65
|
nnind |
|
| 67 |
66
|
ord |
|
| 68 |
18 67
|
impbid |
|