| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2nn | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 2 | 1 | nncnd | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ℂ ) | 
						
							| 3 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 4 | 3 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℂ ) | 
						
							| 5 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 6 | 5 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ≠  0 ) | 
						
							| 7 | 2 4 6 | divcan2d | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ·  ( ( 𝑁  +  1 )  /  2 ) )  =  ( 𝑁  +  1 ) ) | 
						
							| 8 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 9 | 8 4 6 | divcan2d | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ·  ( 𝑁  /  2 ) )  =  𝑁 ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2  ·  ( 𝑁  /  2 ) )  +  1 )  =  ( 𝑁  +  1 ) ) | 
						
							| 11 | 7 10 | eqtr4d | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ·  ( ( 𝑁  +  1 )  /  2 ) )  =  ( ( 2  ·  ( 𝑁  /  2 ) )  +  1 ) ) | 
						
							| 12 |  | nnz | ⊢ ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ  →  ( ( 𝑁  +  1 )  /  2 )  ∈  ℤ ) | 
						
							| 13 |  | nnz | ⊢ ( ( 𝑁  /  2 )  ∈  ℕ  →  ( 𝑁  /  2 )  ∈  ℤ ) | 
						
							| 14 |  | zneo | ⊢ ( ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℤ  ∧  ( 𝑁  /  2 )  ∈  ℤ )  →  ( 2  ·  ( ( 𝑁  +  1 )  /  2 ) )  ≠  ( ( 2  ·  ( 𝑁  /  2 ) )  +  1 ) ) | 
						
							| 15 | 12 13 14 | syl2an | ⊢ ( ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ  ∧  ( 𝑁  /  2 )  ∈  ℕ )  →  ( 2  ·  ( ( 𝑁  +  1 )  /  2 ) )  ≠  ( ( 2  ·  ( 𝑁  /  2 ) )  +  1 ) ) | 
						
							| 16 | 15 | expcom | ⊢ ( ( 𝑁  /  2 )  ∈  ℕ  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ  →  ( 2  ·  ( ( 𝑁  +  1 )  /  2 ) )  ≠  ( ( 2  ·  ( 𝑁  /  2 ) )  +  1 ) ) ) | 
						
							| 17 | 16 | necon2bd | ⊢ ( ( 𝑁  /  2 )  ∈  ℕ  →  ( ( 2  ·  ( ( 𝑁  +  1 )  /  2 ) )  =  ( ( 2  ·  ( 𝑁  /  2 ) )  +  1 )  →  ¬  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ ) ) | 
						
							| 18 | 11 17 | syl5com | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  /  2 )  ∈  ℕ  →  ¬  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ ) ) | 
						
							| 19 |  | oveq1 | ⊢ ( 𝑗  =  1  →  ( 𝑗  +  1 )  =  ( 1  +  1 ) ) | 
						
							| 20 | 19 | oveq1d | ⊢ ( 𝑗  =  1  →  ( ( 𝑗  +  1 )  /  2 )  =  ( ( 1  +  1 )  /  2 ) ) | 
						
							| 21 | 20 | eleq1d | ⊢ ( 𝑗  =  1  →  ( ( ( 𝑗  +  1 )  /  2 )  ∈  ℕ  ↔  ( ( 1  +  1 )  /  2 )  ∈  ℕ ) ) | 
						
							| 22 |  | oveq1 | ⊢ ( 𝑗  =  1  →  ( 𝑗  /  2 )  =  ( 1  /  2 ) ) | 
						
							| 23 | 22 | eleq1d | ⊢ ( 𝑗  =  1  →  ( ( 𝑗  /  2 )  ∈  ℕ  ↔  ( 1  /  2 )  ∈  ℕ ) ) | 
						
							| 24 | 21 23 | orbi12d | ⊢ ( 𝑗  =  1  →  ( ( ( ( 𝑗  +  1 )  /  2 )  ∈  ℕ  ∨  ( 𝑗  /  2 )  ∈  ℕ )  ↔  ( ( ( 1  +  1 )  /  2 )  ∈  ℕ  ∨  ( 1  /  2 )  ∈  ℕ ) ) ) | 
						
							| 25 |  | oveq1 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑗  +  1 )  =  ( 𝑘  +  1 ) ) | 
						
							| 26 | 25 | oveq1d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝑗  +  1 )  /  2 )  =  ( ( 𝑘  +  1 )  /  2 ) ) | 
						
							| 27 | 26 | eleq1d | ⊢ ( 𝑗  =  𝑘  →  ( ( ( 𝑗  +  1 )  /  2 )  ∈  ℕ  ↔  ( ( 𝑘  +  1 )  /  2 )  ∈  ℕ ) ) | 
						
							| 28 |  | oveq1 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑗  /  2 )  =  ( 𝑘  /  2 ) ) | 
						
							| 29 | 28 | eleq1d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝑗  /  2 )  ∈  ℕ  ↔  ( 𝑘  /  2 )  ∈  ℕ ) ) | 
						
							| 30 | 27 29 | orbi12d | ⊢ ( 𝑗  =  𝑘  →  ( ( ( ( 𝑗  +  1 )  /  2 )  ∈  ℕ  ∨  ( 𝑗  /  2 )  ∈  ℕ )  ↔  ( ( ( 𝑘  +  1 )  /  2 )  ∈  ℕ  ∨  ( 𝑘  /  2 )  ∈  ℕ ) ) ) | 
						
							| 31 |  | oveq1 | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( 𝑗  +  1 )  =  ( ( 𝑘  +  1 )  +  1 ) ) | 
						
							| 32 | 31 | oveq1d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( 𝑗  +  1 )  /  2 )  =  ( ( ( 𝑘  +  1 )  +  1 )  /  2 ) ) | 
						
							| 33 | 32 | eleq1d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( ( 𝑗  +  1 )  /  2 )  ∈  ℕ  ↔  ( ( ( 𝑘  +  1 )  +  1 )  /  2 )  ∈  ℕ ) ) | 
						
							| 34 |  | oveq1 | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( 𝑗  /  2 )  =  ( ( 𝑘  +  1 )  /  2 ) ) | 
						
							| 35 | 34 | eleq1d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( 𝑗  /  2 )  ∈  ℕ  ↔  ( ( 𝑘  +  1 )  /  2 )  ∈  ℕ ) ) | 
						
							| 36 | 33 35 | orbi12d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( ( ( 𝑗  +  1 )  /  2 )  ∈  ℕ  ∨  ( 𝑗  /  2 )  ∈  ℕ )  ↔  ( ( ( ( 𝑘  +  1 )  +  1 )  /  2 )  ∈  ℕ  ∨  ( ( 𝑘  +  1 )  /  2 )  ∈  ℕ ) ) ) | 
						
							| 37 |  | oveq1 | ⊢ ( 𝑗  =  𝑁  →  ( 𝑗  +  1 )  =  ( 𝑁  +  1 ) ) | 
						
							| 38 | 37 | oveq1d | ⊢ ( 𝑗  =  𝑁  →  ( ( 𝑗  +  1 )  /  2 )  =  ( ( 𝑁  +  1 )  /  2 ) ) | 
						
							| 39 | 38 | eleq1d | ⊢ ( 𝑗  =  𝑁  →  ( ( ( 𝑗  +  1 )  /  2 )  ∈  ℕ  ↔  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ ) ) | 
						
							| 40 |  | oveq1 | ⊢ ( 𝑗  =  𝑁  →  ( 𝑗  /  2 )  =  ( 𝑁  /  2 ) ) | 
						
							| 41 | 40 | eleq1d | ⊢ ( 𝑗  =  𝑁  →  ( ( 𝑗  /  2 )  ∈  ℕ  ↔  ( 𝑁  /  2 )  ∈  ℕ ) ) | 
						
							| 42 | 39 41 | orbi12d | ⊢ ( 𝑗  =  𝑁  →  ( ( ( ( 𝑗  +  1 )  /  2 )  ∈  ℕ  ∨  ( 𝑗  /  2 )  ∈  ℕ )  ↔  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ  ∨  ( 𝑁  /  2 )  ∈  ℕ ) ) ) | 
						
							| 43 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 44 | 43 | oveq1i | ⊢ ( 2  /  2 )  =  ( ( 1  +  1 )  /  2 ) | 
						
							| 45 |  | 2div2e1 | ⊢ ( 2  /  2 )  =  1 | 
						
							| 46 | 44 45 | eqtr3i | ⊢ ( ( 1  +  1 )  /  2 )  =  1 | 
						
							| 47 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 48 | 46 47 | eqeltri | ⊢ ( ( 1  +  1 )  /  2 )  ∈  ℕ | 
						
							| 49 | 48 | orci | ⊢ ( ( ( 1  +  1 )  /  2 )  ∈  ℕ  ∨  ( 1  /  2 )  ∈  ℕ ) | 
						
							| 50 |  | peano2nn | ⊢ ( ( 𝑘  /  2 )  ∈  ℕ  →  ( ( 𝑘  /  2 )  +  1 )  ∈  ℕ ) | 
						
							| 51 |  | nncn | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℂ ) | 
						
							| 52 |  | add1p1 | ⊢ ( 𝑘  ∈  ℂ  →  ( ( 𝑘  +  1 )  +  1 )  =  ( 𝑘  +  2 ) ) | 
						
							| 53 | 52 | oveq1d | ⊢ ( 𝑘  ∈  ℂ  →  ( ( ( 𝑘  +  1 )  +  1 )  /  2 )  =  ( ( 𝑘  +  2 )  /  2 ) ) | 
						
							| 54 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 55 |  | divdir | ⊢ ( ( 𝑘  ∈  ℂ  ∧  2  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( 𝑘  +  2 )  /  2 )  =  ( ( 𝑘  /  2 )  +  ( 2  /  2 ) ) ) | 
						
							| 56 | 3 54 55 | mp3an23 | ⊢ ( 𝑘  ∈  ℂ  →  ( ( 𝑘  +  2 )  /  2 )  =  ( ( 𝑘  /  2 )  +  ( 2  /  2 ) ) ) | 
						
							| 57 | 45 | oveq2i | ⊢ ( ( 𝑘  /  2 )  +  ( 2  /  2 ) )  =  ( ( 𝑘  /  2 )  +  1 ) | 
						
							| 58 | 56 57 | eqtrdi | ⊢ ( 𝑘  ∈  ℂ  →  ( ( 𝑘  +  2 )  /  2 )  =  ( ( 𝑘  /  2 )  +  1 ) ) | 
						
							| 59 | 53 58 | eqtrd | ⊢ ( 𝑘  ∈  ℂ  →  ( ( ( 𝑘  +  1 )  +  1 )  /  2 )  =  ( ( 𝑘  /  2 )  +  1 ) ) | 
						
							| 60 | 51 59 | syl | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( 𝑘  +  1 )  +  1 )  /  2 )  =  ( ( 𝑘  /  2 )  +  1 ) ) | 
						
							| 61 | 60 | eleq1d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( ( 𝑘  +  1 )  +  1 )  /  2 )  ∈  ℕ  ↔  ( ( 𝑘  /  2 )  +  1 )  ∈  ℕ ) ) | 
						
							| 62 | 50 61 | imbitrrid | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑘  /  2 )  ∈  ℕ  →  ( ( ( 𝑘  +  1 )  +  1 )  /  2 )  ∈  ℕ ) ) | 
						
							| 63 | 62 | orim2d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( ( 𝑘  +  1 )  /  2 )  ∈  ℕ  ∨  ( 𝑘  /  2 )  ∈  ℕ )  →  ( ( ( 𝑘  +  1 )  /  2 )  ∈  ℕ  ∨  ( ( ( 𝑘  +  1 )  +  1 )  /  2 )  ∈  ℕ ) ) ) | 
						
							| 64 |  | orcom | ⊢ ( ( ( ( 𝑘  +  1 )  /  2 )  ∈  ℕ  ∨  ( ( ( 𝑘  +  1 )  +  1 )  /  2 )  ∈  ℕ )  ↔  ( ( ( ( 𝑘  +  1 )  +  1 )  /  2 )  ∈  ℕ  ∨  ( ( 𝑘  +  1 )  /  2 )  ∈  ℕ ) ) | 
						
							| 65 | 63 64 | imbitrdi | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( ( 𝑘  +  1 )  /  2 )  ∈  ℕ  ∨  ( 𝑘  /  2 )  ∈  ℕ )  →  ( ( ( ( 𝑘  +  1 )  +  1 )  /  2 )  ∈  ℕ  ∨  ( ( 𝑘  +  1 )  /  2 )  ∈  ℕ ) ) ) | 
						
							| 66 | 24 30 36 42 49 65 | nnind | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ  ∨  ( 𝑁  /  2 )  ∈  ℕ ) ) | 
						
							| 67 | 66 | ord | ⊢ ( 𝑁  ∈  ℕ  →  ( ¬  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ  →  ( 𝑁  /  2 )  ∈  ℕ ) ) | 
						
							| 68 | 18 67 | impbid | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  /  2 )  ∈  ℕ  ↔  ¬  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ ) ) |