Metamath Proof Explorer


Theorem nnexpscl

Description: Closure law for positive surreal integer exponentiation. (Contributed by Scott Fenton, 8-Nov-2025)

Ref Expression
Assertion nnexpscl Could not format assertion : No typesetting found for |- ( ( A e. NN_s /\ N e. NN0_s ) -> ( A ^su N ) e. NN_s ) with typecode |-

Proof

Step Hyp Ref Expression
1 nnssno s No
2 nnmulscl x s y s x s y s
3 1nns 1 s s
4 1 2 3 expscllem Could not format ( ( A e. NN_s /\ N e. NN0_s ) -> ( A ^su N ) e. NN_s ) : No typesetting found for |- ( ( A e. NN_s /\ N e. NN0_s ) -> ( A ^su N ) e. NN_s ) with typecode |-