Metamath Proof Explorer


Theorem nnexpscl

Description: Closure law for positive surreal integer exponentiation. (Contributed by Scott Fenton, 8-Nov-2025)

Ref Expression
Assertion nnexpscl ( ( 𝐴 ∈ ℕs𝑁 ∈ ℕ0s ) → ( 𝐴s 𝑁 ) ∈ ℕs )

Proof

Step Hyp Ref Expression
1 nnssno s No
2 nnmulscl ( ( 𝑥 ∈ ℕs𝑦 ∈ ℕs ) → ( 𝑥 ·s 𝑦 ) ∈ ℕs )
3 1nns 1s ∈ ℕs
4 1 2 3 expscllem ( ( 𝐴 ∈ ℕs𝑁 ∈ ℕ0s ) → ( 𝐴s 𝑁 ) ∈ ℕs )