Description: Closure law for positive surreal integer exponentiation. (Contributed by Scott Fenton, 8-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnexpscl | ⊢ ( ( 𝐴 ∈ ℕs ∧ 𝑁 ∈ ℕ0s ) → ( 𝐴 ↑s 𝑁 ) ∈ ℕs ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssno | ⊢ ℕs ⊆ No | |
| 2 | nnmulscl | ⊢ ( ( 𝑥 ∈ ℕs ∧ 𝑦 ∈ ℕs ) → ( 𝑥 ·s 𝑦 ) ∈ ℕs ) | |
| 3 | 1nns | ⊢ 1s ∈ ℕs | |
| 4 | 1 2 3 | expscllem | ⊢ ( ( 𝐴 ∈ ℕs ∧ 𝑁 ∈ ℕ0s ) → ( 𝐴 ↑s 𝑁 ) ∈ ℕs ) |