Description: Closure law for surreal integer exponentiation. (Contributed by Scott Fenton, 11-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zexpscl | ⊢ ( ( 𝐴 ∈ ℤs ∧ 𝑁 ∈ ℕ0s ) → ( 𝐴 ↑s 𝑁 ) ∈ ℤs ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zssno | ⊢ ℤs ⊆ No | |
| 2 | simpl | ⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → 𝑥 ∈ ℤs ) | |
| 3 | simpr | ⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → 𝑦 ∈ ℤs ) | |
| 4 | 2 3 | zmulscld | ⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → ( 𝑥 ·s 𝑦 ) ∈ ℤs ) |
| 5 | 1zs | ⊢ 1s ∈ ℤs | |
| 6 | 1 4 5 | expscllem | ⊢ ( ( 𝐴 ∈ ℤs ∧ 𝑁 ∈ ℕ0s ) → ( 𝐴 ↑s 𝑁 ) ∈ ℤs ) |