Description: Closure law for surreal integer exponentiation. (Contributed by Scott Fenton, 11-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zexpscl | |- ( ( A e. ZZ_s /\ N e. NN0_s ) -> ( A ^su N ) e. ZZ_s ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zssno | |- ZZ_s C_ No |
|
| 2 | simpl | |- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> x e. ZZ_s ) |
|
| 3 | simpr | |- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> y e. ZZ_s ) |
|
| 4 | 2 3 | zmulscld | |- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> ( x x.s y ) e. ZZ_s ) |
| 5 | 1zs | |- 1s e. ZZ_s |
|
| 6 | 1 4 5 | expscllem | |- ( ( A e. ZZ_s /\ N e. NN0_s ) -> ( A ^su N ) e. ZZ_s ) |