Metamath Proof Explorer


Theorem zexpscl

Description: Closure law for surreal integer exponentiation. (Contributed by Scott Fenton, 11-Dec-2025)

Ref Expression
Assertion zexpscl
|- ( ( A e. ZZ_s /\ N e. NN0_s ) -> ( A ^su N ) e. ZZ_s )

Proof

Step Hyp Ref Expression
1 zssno
 |-  ZZ_s C_ No
2 simpl
 |-  ( ( x e. ZZ_s /\ y e. ZZ_s ) -> x e. ZZ_s )
3 simpr
 |-  ( ( x e. ZZ_s /\ y e. ZZ_s ) -> y e. ZZ_s )
4 2 3 zmulscld
 |-  ( ( x e. ZZ_s /\ y e. ZZ_s ) -> ( x x.s y ) e. ZZ_s )
5 1zs
 |-  1s e. ZZ_s
6 1 4 5 expscllem
 |-  ( ( A e. ZZ_s /\ N e. NN0_s ) -> ( A ^su N ) e. ZZ_s )