Metamath Proof Explorer


Theorem nnindd

Description: Principle of Mathematical Induction (inference schema) on integers, a deduction version. (Contributed by Thierry Arnoux, 19-Jul-2020)

Ref Expression
Hypotheses nnindd.1 x=1ψχ
nnindd.2 x=yψθ
nnindd.3 x=y+1ψτ
nnindd.4 x=Aψη
nnindd.5 φχ
nnindd.6 φyθτ
Assertion nnindd φAη

Proof

Step Hyp Ref Expression
1 nnindd.1 x=1ψχ
2 nnindd.2 x=yψθ
3 nnindd.3 x=y+1ψτ
4 nnindd.4 x=Aψη
5 nnindd.5 φχ
6 nnindd.6 φyθτ
7 1 imbi2d x=1φψφχ
8 2 imbi2d x=yφψφθ
9 3 imbi2d x=y+1φψφτ
10 4 imbi2d x=Aφψφη
11 6 ex φyθτ
12 11 expcom yφθτ
13 12 a2d yφθφτ
14 7 8 9 10 5 13 nnind Aφη
15 14 impcom φAη