Metamath Proof Explorer


Theorem nnm1

Description: Multiply an element of _om by 1o . (Contributed by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion nnm1 AωA𝑜1𝑜=A

Proof

Step Hyp Ref Expression
1 df-1o 1𝑜=suc
2 1 oveq2i A𝑜1𝑜=A𝑜suc
3 peano1 ω
4 nnmsuc AωωA𝑜suc=A𝑜+𝑜A
5 3 4 mpan2 AωA𝑜suc=A𝑜+𝑜A
6 nnm0 AωA𝑜=
7 6 oveq1d AωA𝑜+𝑜A=+𝑜A
8 nna0r Aω+𝑜A=A
9 5 7 8 3eqtrd AωA𝑜suc=A
10 2 9 eqtrid AωA𝑜1𝑜=A