Metamath Proof Explorer


Theorem nnm2

Description: Multiply an element of _om by 2o . (Contributed by Scott Fenton, 18-Apr-2012) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion nnm2 AωA𝑜2𝑜=A+𝑜A

Proof

Step Hyp Ref Expression
1 df-2o 2𝑜=suc1𝑜
2 1 oveq2i A𝑜2𝑜=A𝑜suc1𝑜
3 1onn 1𝑜ω
4 nnmsuc Aω1𝑜ωA𝑜suc1𝑜=A𝑜1𝑜+𝑜A
5 3 4 mpan2 AωA𝑜suc1𝑜=A𝑜1𝑜+𝑜A
6 nnm1 AωA𝑜1𝑜=A
7 6 oveq1d AωA𝑜1𝑜+𝑜A=A+𝑜A
8 5 7 eqtrd AωA𝑜suc1𝑜=A+𝑜A
9 2 8 eqtrid AωA𝑜2𝑜=A+𝑜A