Metamath Proof Explorer


Theorem nnnn0addcl

Description: A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005) (Proof shortened by Mario Carneiro, 16-May-2014)

Ref Expression
Assertion nnnn0addcl MN0M+N

Proof

Step Hyp Ref Expression
1 elnn0 N0NN=0
2 nnaddcl MNM+N
3 oveq2 N=0M+N=M+0
4 nncn MM
5 4 addridd MM+0=M
6 3 5 sylan9eqr MN=0M+N=M
7 simpl MN=0M
8 6 7 eqeltrd MN=0M+N
9 2 8 jaodan MNN=0M+N
10 1 9 sylan2b MN0M+N