Metamath Proof Explorer


Theorem nnoddn2prm

Description: A prime not equal to 2 is an odd positive integer. (Contributed by AV, 28-Jun-2021)

Ref Expression
Assertion nnoddn2prm N2N¬2N

Proof

Step Hyp Ref Expression
1 eldifi N2N
2 prmnn NN
3 1 2 syl N2N
4 oddprm N2N12
5 nnz N12N12
6 nnz NN
7 oddm1d2 N¬2NN12
8 6 7 syl N¬2NN12
9 5 8 syl5ibrcom N12N¬2N
10 4 9 syl N2N¬2N
11 3 10 jcai N2N¬2N