Metamath Proof Explorer


Theorem nnssi2

Description: Convert a theorem for real/complex numbers into one for positive integers. (Contributed by Jeff Hoffman, 17-Jun-2008)

Ref Expression
Hypotheses nnssi2.1 D
nnssi2.2 B φ
nnssi2.3 A D B D φ ψ
Assertion nnssi2 A B ψ

Proof

Step Hyp Ref Expression
1 nnssi2.1 D
2 nnssi2.2 B φ
3 nnssi2.3 A D B D φ ψ
4 1 sseli A A D
5 1 sseli B B D
6 4 5 2 3anim123i A B B A D B D φ
7 6 3anidm23 A B A D B D φ
8 7 3 syl A B ψ