Description: Convert a theorem for real/complex numbers into one for positive integers. (Contributed by Jeff Hoffman, 17-Jun-2008)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nnssi2.1 | |- NN C_ D |
|
nnssi2.2 | |- ( B e. NN -> ph ) |
||
nnssi2.3 | |- ( ( A e. D /\ B e. D /\ ph ) -> ps ) |
||
Assertion | nnssi2 | |- ( ( A e. NN /\ B e. NN ) -> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssi2.1 | |- NN C_ D |
|
2 | nnssi2.2 | |- ( B e. NN -> ph ) |
|
3 | nnssi2.3 | |- ( ( A e. D /\ B e. D /\ ph ) -> ps ) |
|
4 | 1 | sseli | |- ( A e. NN -> A e. D ) |
5 | 1 | sseli | |- ( B e. NN -> B e. D ) |
6 | 4 5 2 | 3anim123i | |- ( ( A e. NN /\ B e. NN /\ B e. NN ) -> ( A e. D /\ B e. D /\ ph ) ) |
7 | 6 | 3anidm23 | |- ( ( A e. NN /\ B e. NN ) -> ( A e. D /\ B e. D /\ ph ) ) |
8 | 7 3 | syl | |- ( ( A e. NN /\ B e. NN ) -> ps ) |