Description: Convert a theorem for real/complex numbers into one for positive integers. (Contributed by Jeff Hoffman, 17-Jun-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nnssi2.1 | ⊢ ℕ ⊆ 𝐷 | |
| nnssi2.2 | ⊢ ( 𝐵 ∈ ℕ → 𝜑 ) | ||
| nnssi2.3 | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝜑 ) → 𝜓 ) | ||
| Assertion | nnssi2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝜓 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nnssi2.1 | ⊢ ℕ ⊆ 𝐷 | |
| 2 | nnssi2.2 | ⊢ ( 𝐵 ∈ ℕ → 𝜑 ) | |
| 3 | nnssi2.3 | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝜑 ) → 𝜓 ) | |
| 4 | 1 | sseli | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ 𝐷 ) | 
| 5 | 1 | sseli | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ 𝐷 ) | 
| 6 | 4 5 2 | 3anim123i | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝜑 ) ) | 
| 7 | 6 | 3anidm23 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝜑 ) ) | 
| 8 | 7 3 | syl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝜓 ) |