Metamath Proof Explorer


Theorem nnssi2

Description: Convert a theorem for real/complex numbers into one for positive integers. (Contributed by Jeff Hoffman, 17-Jun-2008)

Ref Expression
Hypotheses nnssi2.1 D
nnssi2.2 Bφ
nnssi2.3 ADBDφψ
Assertion nnssi2 ABψ

Proof

Step Hyp Ref Expression
1 nnssi2.1 D
2 nnssi2.2 Bφ
3 nnssi2.3 ADBDφψ
4 1 sseli AAD
5 1 sseli BBD
6 4 5 2 3anim123i ABBADBDφ
7 6 3anidm23 ABADBDφ
8 7 3 syl ABψ