Metamath Proof Explorer


Theorem nnssi3

Description: Convert a theorem for real/complex numbers into one for positive integers. (Contributed by Jeff Hoffman, 17-Jun-2008)

Ref Expression
Hypotheses nnssi3.1 D
nnssi3.2 C φ
nnssi3.3 A D B D C D φ ψ
Assertion nnssi3 A B C ψ

Proof

Step Hyp Ref Expression
1 nnssi3.1 D
2 nnssi3.2 C φ
3 nnssi3.3 A D B D C D φ ψ
4 1 sseli A A D
5 1 sseli B B D
6 1 sseli C C D
7 4 5 6 3anim123i A B C A D B D C D
8 2 3ad2ant3 A B C φ
9 7 8 3 syl2anc A B C ψ